BioPrEP – a regional, process-based approach for assessment of land with high conservation value for Bush Heritage Australia

By Brendan Mackey, Sandy Gilmore, Hugh Pringle, Paul Foreman, Linda van Bommel, Sandra Berry and Murray Haseler

Introduction

Bush Heritage has the organisational mission of owning and managing (directly or in partnership) 1% of Australia by 2025 and in so doing conserve ‘land, water and wildlife of high conservation value’ (HCV). But, how can HCV be usefully defined to guide the organisation’s investments? Here, we consider HCV in terms of habitat quality defined by measures of biological and ecological productivity at a land system scale (*sensu* Christian & Stewart 1953).

Note that the term ‘land’ is used here in reference to whole terrestrial ecosystems, including their aquatic components.

Historically, protected areas have tended to be biased away from more productive land of high value for human production systems, especially agriculture, pastoralism and forestry (Pringle 1995; Pressey et al. 2002). While this bias in the protected areas network (PAN) is recognised, opportunities for its expansion on to more productive land are limited for a variety of reasons including land costs and availability (McDonald-Madden et al. 2008). Limited opportunities means prioritisation of resources to achieve the best possible conservation outcomes is important (Possingham et al. 2001). Private conservation organisations can play an important complementary role in addressing this gap given their non-government status, organisational flexibility and capacity to develop innovative land management partnerships.

Since the 1990s, the comprehensiveness, adequacy and representativeness criteria (CAR; Commonwealth of Australia 1997) have been used by the states, territories and the Commonwealth to underpin more systematic conservation planning (Bryan 2002; NRMMC 2004). Application of the CAR approach has involved a focus on target species, their habitat and ecosystems usually defined in terms of dominant vegetation types. However, despite long-standing recognition of its importance (Margules & Pressey 2000), measures of habitat quality and related ecological processes are not usually considered. Nonetheless, it is increasingly recognised that, along with the CAR criteria, consideration must also be given to ecosystem functions and the ecological processes that both generate and sustain biodiversity assets (Pressey et al. 2003; Souč et al. 2004; Mackey 2007; Klein et al. 2009).

In response to the above issues, Bush Heritage has developed an approach to land assessment for conservation that endeavours to explicitly consider some key ecological processes that relate to habitat quality. The approach builds upon established conservation criteria, including the CAR criteria, but gives priority to identifying land with high habitat quality defined in terms of biological and ecological productivity at the land system scale. The framework is called Biodiversity...
Prediction using Ecological Processes (BioPrEP), and comprises a set of seven biodiversity conservation goals, along with candidate criteria and indicators. The purpose of BioPrEP is to enable Bush Heritage to have a more systematic, transparent and scientifically based approach to its conservation investments, and to identify land that better meets its organisational mission and complements the existing national reserve system (NRS) (Commonwealth of Australia 2005).

This paper: (i) reviews ecological theory relevant to measuring habitat quality defined in terms of biological and ecological productivity at the landscape scale; (ii) details the main elements of the framework and the procedure developed for its application and then (iii) presents indicative analyses from one of the priority regions identified for Bush Heritage conservation investments.

Conceptual Framework

Quality cf. quantity

Systematic conservation planning has drawn substantially upon island biogeography theory (MacArthur & Wilson 1967). Diamond (1975) operationalised this theory by proposing some geometric principles for designing reserves that focus on ‘size’ and ‘spatial configuration’; all other factors being equal, ‘more is better’. From this perspective, the quantity and overall spatial configuration of land that is added to the PAN becomes the paramount consideration. ‘Spatial configuration’ refers to the geographical location of reserves in relation to each other. Let us call this Diamond-based approach the ‘quantity principle’. It is problematic for Bush Heritage to base its land assessment approach on the quantity principle alone because its activities are built around a relatively small total area of land. The CAR criteria provide helpful additional considerations by focussing attention on the representation in PANs of species and ecological types. Furthermore, the ‘adequacy’ criterion opens the door for considering, among other things, measures related to habitat quality.

Ecological theory has developed in recent decades in a direction that helps inform consideration of how measures of habitat quality can be incorporated into the conservation assessment of land. Specifically, a body of ecological theory has emerged which explicitly accounts for the relationships between habitat productivity and various aspects of biodiversity such as species richness, functional diversity, population abundance and persistence. Of particular relevance are: (i) the metabolic theory of ecology (Brown et al. 2004; Rooney et al. 2006; McCann 2007); (ii) habitat source/sink theory (Pulliam 1988) and (iii) the dynamic habitat templet theory of Southwood (1988). These theories provide the basis for developing additional conservation criteria that complement those related more closely to the quantity principle.

Theoretical underpinnings of habitat quality

The metabolic theory of ecology (Brown et al. 2004) provides a cross scale synthesis of a number of theories related to species–energy relationships [species-area theory (Preston 1962); species-energy theory (Wright 1983); macro-ecology theory (Brown & Maurer 1989) and food web theory (Boudreau et al. 1991)]. At the heart of this theory is the concept of metabolic rate = the rate at which organisms take up, transform and expend energy and materials. Brown and colleagues have developed a quantitative theory for how metabolic rate varies with body size and temperature. Metabolic theory predicts how metabolic rate, by setting the rates of resource uptake from the environment, along with body size, influences resource allocation to survival, growth and reproduction. Energy fluxes and stores consequently control ecological processes at all levels of organisation from individuals to the biosphere.

Resource availability (or habitat productivity) can be considered in terms of gross primary productivity (GPP) and the subsequent supply of vegetation-based habitat resources (food, shelter and nesting) (Berry & Mackey 2007; Berry et al. 2007).

The relevance to habitat quality of theories relating species metabolism to energy and resource availability can be appreciated when viewed in light of two additional concepts, namely: source/sink habitat theory (Pulliam 1988) and habitat templet theory (Southwood 1988). Source/sink theory is based on the proposition that for many species a large portion of their populations occurs in ‘sink’ habitat where reproduction is insufficient to balance mortality. Where populations persist in such habitats, it is because they are maintained by immigration from more productive ‘source’ habitat locations. Note that this is consistent with niche theory (Hutchinson 1958) where, within the envelope of permissible habitat conditions, there is an optimal subset for a species.

Habitat templet theory considers the ecological and evolutionary implications of space/time variability in the productivity of habitat resources and complements source/sink theory because it suggests that what constitutes a source habitat can vary from ecosystem to ecosystem and from species to species. Theoretically, a given potential habitat volume can be specified within the space defined by: (i) overall habitat productivity; (ii) the temporal stability of the habitat resources and (iii) the stress or most resource-poor conditions that species would encounter. The third axis was originally interpreted to reflect physiological stresses separate from trophic energy resources. However, here we consider it in terms of resource-poor conditions. Different habitat productivity regimes can be identified within this three-dimensional volume, each best suited to assemblages of species with differing life history strategies (Mackey et al. 2008a).

Consistent with both the source/sink and habitat templet theories, Stafford-Smith and Morton (1990) identified in arid Australia two distinctive food chains that occupy the intrinsically high and low productivity habitat regimes occurring in these landscapes. The high productivity regimes are associated with sites where water and nutrients are more plentiful, and support a diverse and abundant herbivorous and granivorous mammalian fauna. In the low productivity regimes, rates of perennial plant growth are slower and a detritivore-based food chain dominates. In Australia’s forest and woodland ecosystems, source habitats tend to correspond with landscape positions that have deep, well watered and nutrient-rich soils and substrates - most typically: lower hill
slopes; valley bottom flats and alluvial flood plains.

In summary, there is now a strong theoretical basis for incorporating into systematic conservation planning goals and criteria that reflect habitat quality; along with consideration of the area, spatial configuration and representation of habitat and ecological types. A focus on habitat quality promotes a richer interpretation of a ‘more is better’ approach. However, what constitutes high quality habitat will vary between bioregions. Among other things, the ecological processes that generate and sustain habitat resources, together with the associated biotic-interactions, change depending on environmental conditions and the life history characteristics of the regional pool of available species. Therefore, rather than one generic set of criteria and indicators, different measures may be needed to assess habitat quality in different bioregions.

The BioPreP land assessment framework

Bush Heritage has decided to focus on five priority regions (clusters of IBRA – Interim Biogeographic Regionalisation of Australia – bioregions; Thackway & Cresswell 1999) as determined by national biodiversity conservation priorities, the location of existing conservation investments (especially reserves) and the location of key partners (especially the corporate pastoral and indigenous sectors). The BioPreP framework allows for operating sub-regionally in identifying and assessing priority landscapes and has three components: (i) an interpretation of the Bush Heritage mission statement; (ii) seven biodiversity conservation goals (Table 1) and (iii) for each goal, a set of candidate criteria and indicators (Table 2). Land that rates highly against the criteria will therefore be given priority consideration for conservation investments.

The choice of criteria and indicators relies on expert judgment, and will vary with the bioregional context (as noted above) and the availability of data. Given the absence of systematic inventories of biota and ecosystem process rates at representative sites, the inability to map key indicators across extensive landscapes, and the lack of experience in application of habitat quality-related conservation goals, deferring to professional judgement in the selection of criteria and indicators is unavoidable. Neither is the choice fixed, as new criteria and indicators will become available over time as ecological knowledge, new technologies and changing circumstances dictate. The principle of parsimony suggests that the smallest set of criteria and indicators possible be used; implying it is better to focus on high level, integrative indices for which data are

<table>
<thead>
<tr>
<th>Goal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Capture viable source areas</td>
<td>Across all of Australia’s biomes, ‘source areas’ for threatened and declining species have been lost or are under-represented in the PAN (Pringle 1996; Pressey et al. 2002; Pringle et al. 2003). These are often ‘run-on’ sites that receive lateral water flow or ground water discharge and are more biological productive.</td>
</tr>
<tr>
<td>2. Protect the areas with highest remaining functional integrity</td>
<td>The degree to which ecological function1 has been degraded (e.g. through the loss of framework species sensu Tongway et al. 1997), soil loss, or intrusion of weeds and feral animals, the greater the need for restoration/rehabilitation, along with the associated costs and risks of failure. Given their organisational capacities, Bush Heritage’s conservation investments are more effectively directed to land that is in better condition and requires less ecological restoration</td>
</tr>
<tr>
<td>3. Improve the level of protection of the least protected ecological types</td>
<td>Because Bush Heritage aims to complement public and other private conservation efforts via a partnership business model, it is also appropriate for their investments to be focused on land systems that are currently poorly conserved through other efforts</td>
</tr>
<tr>
<td>4. Protect functionally viable populations of significant species or assemblages and their (biophysical) habitat</td>
<td>Application of this goal requires identifying land that has extant viable populations of significant species; as distinct from populations in degraded habitats that are highly disturbed and require extensive restoration investments or that are otherwise marginal or sub-optimal for the species. A ‘significant’ species or assemblage is defined here as those that are (1) formally listed as threatened under State or Commonwealth legislation, (2) considered functionally important, (3) endemic, (4) phylogenically novel or (5) otherwise recognised as important for cultural or economical reasons</td>
</tr>
<tr>
<td>5. Contribute to mitigating current and future threats to Australian biodiversity</td>
<td>Addressing this goal will give priority to land which is in good condition and not currently being degraded or under active threats, but where it is anticipated that future land use or environmental change will introduce threats to biodiversity. By being proactive, Bush Heritage can contribute to safeguarding, in a cost effective way, land systems likely to be vulnerable to future damage</td>
</tr>
<tr>
<td>6. Spread investments across bioregional gradients</td>
<td>There are at least two reasons to reflect regional-scale diversity in the investment strategy: (1) as a standard risk reduction strategy by investing in a range of areas that are likely to respond differently to the same meso-scale event and (2) to hedge the potential enormous impact of human-forced rapid climate change as it is currently impossible to predict with sufficient certainty future climate at a bioregional scale</td>
</tr>
<tr>
<td>7. Optimise spatial configuration of protected habitat</td>
<td>This goal provides for consideration of the quantity and area-based design principles of Diamond (1975) whereby, all other factors being equal, preference is given to the largest and most spatially contiguous extant habitat, and land that will add to, buffer, or link existing conservation areas</td>
</tr>
</tbody>
</table>

1Ecological function comprises two elements: (1) the ecosystem functions species perform such as seed and spore dispersal, pollination, regulation of prey species, increasing rates of biomass decomposition and nutrient turnover; nutrient conservation and micro-topography and (2) the condition of the stocks and flows of water, nutrients and energy that sustain ecosystem productivity and also buffer the ecosystem against the vagaries of climate and disturbance.
widely available (Bailey et al. 2004; see Nix 1976, 1982; for Australian evidence). Further discussion on the selection of the criteria and indicators is presented in Mackey et al. (2008b,c) which are available on request.

Case Study

Methods

The Woodland region of south-eastern Australia (Fig. 1) was selected for the case study analyses to test the proposed framework and investigate issues concerning selection of candidate criteria and estimation of indicator values. The major considerations in the selection of criteria and indicators were: (i) the availability of data with which to calculate the indicators; (ii) the principle of parsimony such that the smallest set of criteria and indicators is used and (iii) Bush Heritage’s investment decision-making process which uses the information generated by the BioPrEP framework. Application of an indicator requires that it can be measured on a landscape-wide basis, which means spatially distributed data values must be available. Despite the enhanced capacity that GIS (Geographic Information Systems), environmental modelling and remote sensing provide for spatial analysis, serious data gaps remain and this will likely remain the case for many decades yet. Therefore, many theoretically useful indicators will remain out of reach for conservation land assessment for some time. The principle of parsimony is readily justified simply in terms of efficiency, but there are also statistical reasons to consider the fewest variables possible.

Decision-support tool

To aid in these preliminary investigations into applying the BioPrEP framework, a transparent, easy-to-use graphical user interface called MCAS-S (Bureau of Rural Sciences 2007) has been adopted as a decision-support tool. MCAS-S (Multi-Criteria Analysis Shell for Spatial Decision Support) has the advantage of intuitively and easily enabling technically unskilled senior

<table>
<thead>
<tr>
<th>Conservation goal</th>
<th>Candidate criteria</th>
<th>Candidate indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Capture source areas</td>
<td>1. Locations that have the highest and most reliable levels of productivity for a given ecosystem type</td>
<td>Average, seasonal and inter-annual variability in gross primary productivity (GPP) of the vegetation cover for woody and herbaceous plants, Landform unit defined by topographic attributes and substrate, Fertile soils, Rain Use Efficiency (RUE) index</td>
</tr>
<tr>
<td>2. Protect the areas with highest remaining functional integrity</td>
<td>2. Site Leakiness, 2.2. Catchment Integrity, 2.3. Integrity of Vegetation Cover, 2.4. Community Integrity</td>
<td>Landscape Function Analysis, River Disturbance Index, Nutrient Imbalance Index, VAST classification of vegetation condition, Degree of land clearing and fragmentation in a given land system, Compositional integrity, Compositional nestedness, Invasive plant importance indices, Dominance of highly interactive feral and native animal species</td>
</tr>
<tr>
<td>3. Improve the level of protection of the least protected ecological types</td>
<td>3.1. Level of the ecological type’s representation within existing PAN</td>
<td>Area of remnant relative to the original distribution of an ecological type, Replication across the geographical range of an ecological type, Irreplaceability</td>
</tr>
<tr>
<td>4. Protect functionally viable populations of significant species or assemblages and their (biophysical) habitat</td>
<td>4.1. Viable populations of significant species assemblages and habitats</td>
<td>Minimum area to maintain viability of ecosystem processes, Known or predicted presence of species, Assessment of population viability</td>
</tr>
<tr>
<td>5. Contribute to mitigating current and future threats to Australian biodiversity.</td>
<td>5.1. Locations not yet, but potentially subject to intensification or expansion of grazing or agriculture, 5.2 Fire, drought or climate change refugia</td>
<td>Land use capability evaluation, Long unburnt areas, Permanent or semi-permanent mesic areas, The distribution of phylogenetically ancient species, The distribution of ecologically sensitive species</td>
</tr>
<tr>
<td>6. Spread investments across Bioregional gradients</td>
<td>6.1. Regional and subregional representation</td>
<td>Distribution with respect to IBRA region</td>
</tr>
<tr>
<td>7. Optimise size and spatial configuration of protected habitat</td>
<td>7.1. Spatial coherence of conservation habitat</td>
<td>Patch size (ha), Fragmentation statistics, Adjacency to existing conservation land</td>
</tr>
</tbody>
</table>
managers to interrogate land assessment data and explore conservation investment options. In this way, senior managers can gain more first hand experience with the BioPrEP framework and the implications of the information derived from its application for their investment decisions. MCAS-S assumes the user has already generated the necessary indicator values using a GIS such as ArcMAP (ESRI 2006).

Spatial unit of analysis

The Woodlands region encompasses largely temperate climatic regimes and is dominated by erosional land systems. This region is also primarily free-hold/public land, and has experienced extensive native vegetation clearing and habitat fragmentation. Sub-catchments were selected as an ecologically appropriate and useful spatial unit of analysis (SUoA). However, the choice of the SUoA varies with bioregion. For example, the Gulf Plains bioregion in northern Queensland encompasses tropical climatic regimes, is dominated by depositional land systems and is primarily leasehold and Indigenous land, with native vegetation cover relatively intact. In that region, pastoral leases might be a more appropriate SUoA.

Selection of indicators

When applying BioPrEP in a given region, the user must first decide on the most appropriate criteria for each of the seven goals. Then, the most appropriate indicator must be selected for each chosen criterion. Here, we selected criteria and indicators based on: (i) the ecological characteristics of the bioregion and (ii) the continental availability of source data. The appropriateness of an indicator

Figure 1. Input data layers for goals 1, 2 and 3 from ArcMAP into MCAS-S for the Woodlands region of south-eastern Australia respectively: (a) landform units with categories below lower slope position being indicators of source areas; (b) the distribution of high quality grassy woodland (defined by the level and seasonality of gross primary productivity (GPP)) and (c) percentage of the continental area of each National Vegetation Information System (NVIS) major vegetation groups found within the National Reserve System (NRS).
will vary depending on the region’s particular ecological conditions and land use history. While we focused on continentally available data, future bioregional evaluations can and should draw upon finer resolution data where available.

The data layers used to calculate the indicator variables are listed in Table 3. Indicators were selected from the candidate set based on expert knowledge about both the indicators and the ecological conditions of the case study region. Table 3 also details sources for the data and the methods used to generate the spatially distributed estimates of the indicator values. The data layers were generated at a grid cell resolution of 250 m, commensurate with the scale of the available remotely sensed data and continental digital elevation model.

Analytical steps

The reporting function of MCAS-S provides the user with the ability to assess and rank spatial units according to a set of user-defined indicator values. We developed a sequential approach to assessing land in relation to the seven conservation goals (Table 4). Goal 6 (Spread investments across bioregional gradients) was given effect by separately analysing each of the bioregions found with the case study region. The indicators for goals 1 (Source areas), 2 (Functional integrity) and 3 (Least protected) were applied simultaneously using the MCAS-S three-way comparison function to map ‘Areas of Interest’ (AoI) from the spatial coincidence of the highest values for the three indicators (Fig. 1).

The reporting function in MCAS-S was then used to overlay the sub-catchment boundaries on the AoI and tabulate descriptive statistics and display maps which identified the spatial units with the highest rankings. Goal 7 (Optimise spatial configuration of protected habitat) was given effect by identifying spatial units that had the largest, contiguous extent of land with highest indicator values. Goals 4 (Functionally viable populations) and 5 (Mitigate threats) were not considered here due to time and resource constraints and their application remains a task for ongoing research.

The rationale behind this sequence (Table 4) came from considering how the information will be used in the decision-making process. Application of a criterion acts as a filter which removes land from

Table 3. Summary of the data layers used to calculate the indicator variables. For data sources and methods see footnotes and also Mackey et al. (2008a)

<table>
<thead>
<tr>
<th>Indicator variable</th>
<th>Source data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landform unit† (used for Goal 1: Capture Source Areas)</td>
<td>A Digital Elevation Model (DEM)</td>
</tr>
<tr>
<td>Vegetation Productivity Response including: GPP of the non-growth season and % turgor of GPP (used for – Goal 2: Protect the areas with highest remaining functional integrity)</td>
<td>Terrain attributes classification algorithm</td>
</tr>
<tr>
<td>National Vegetation Information System‡ (NVIS) (used for – Goal 3: Improve the level of protection of the least protected ecological types)</td>
<td>MODIS monthly Normalized Difference Vegetation Index (NDVI) data</td>
</tr>
<tr>
<td>CAPAD (Conservation and Protected Areas Database) protected areas in the National Reserve System (used for – Goal 3: Improve the level of protection of the least protected ecological types)</td>
<td>GPP modelling algorithm</td>
</tr>
<tr>
<td>IBRA§ (Used for Goal 6: Spread investments across bioregional gradients)</td>
<td>Mean monthly radiation data</td>
</tr>
<tr>
<td>Sub-catchment boundaries¶ (reporting framework in Woodlands region)</td>
<td>Vegetation mapping from State agencies</td>
</tr>
<tr>
<td>Sub-catchments from the Spatial coincidence of the highest values for the three indicators (Fig. 1).</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Sequential steps used in MCAS-S to apply the goals, criteria and indicators in the Woodlands case study region

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Woodlands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apply criterion for goal 6 (Spread investments across bioregional gradients)</td>
<td>Nine IBRA bioregions</td>
</tr>
<tr>
<td>2</td>
<td>Apply criterion for goals 1 (Capture source areas), 2 (Protect the areas with highest remaining functional integrity) and 3 (Improve the level of protection of the least protected ecological types) using preferred indicators: (‘Areas of Interest’)</td>
<td>Landform unit as the indicator of criterion 1.1; High quality grassy woodland (defined by the level and seasonality of GPP) as the indicator of criterion 2.4; NVIS major vegetation groups as the target for indicator 3.1</td>
</tr>
<tr>
<td>3</td>
<td>Apply criterion for goal 7 (Optimise spatial configuration of protected habitat)</td>
<td>Sub-catchments as the spatial units of analysis</td>
</tr>
<tr>
<td>4</td>
<td>Apply criterion for goal 4 (Significant species and assemblages)</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Apply criterion for goal 5 (Mitigating threats)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Goals 4 and 5 have not been included in this case study, but will be incorporated in the final framework. IBRA, Interim Biogeographic Regionalisation of Australia.
it makes sense to apply goal 6 sequentially ahead of others as it reflects broader scale considerations. Goals 1, 2 and 3 are best considered jointly as there will often be trade-offs and it may not prove possible to find locations that have maximum values for all three (e.g. the source areas may not have the highest functional integrity).

Results
The key result was a ranking of spatial units that had the highest values for the selected indicators, presented in the form of tables and maps ranking the SUoA (i.e. sub-catchments) according to the calculated extent of AoI stratified by bioregion (Fig. 2).

The Woodlands region contained a total of 655 799 ha of AoI (1.8% of total area) spread across all nine bioregions (or part bioregions), with the majority (81.5%) in the Brigalow Belt South and Riverina (southern half) bioregions. With the exception of the Victorian Volcanic Plains (where there is only a relatively small amount of native forest and woodland), the balance was evenly shared between the remaining bioregions (Table 5).

This clustering of AoI was further evident at the sub-bioregion scale with 88.9% of the total AoI occurring in the highest ranked one or two sub-bioregions (representing 16 of the 55 sub-bioregions in the Woodlands region) (Table 5). These 16 sub-bioregions have been selected as candidates for future pro-active property assessment under Bush Heritage’s draft Woodlands strategic plan.

Within the Woodlands region, sub-catchments on average had an area of about 20 000 ha. Sub-catchments as small as one grid cell, representing a very short stream link between tributary confluences, were not integrated with downstream catchment units. This gave a total of 4528 sub-catchments in the Woodlands region (Fig. 2). Although the majority of the AoI (94.2%) was contained in the 798 sub-catchments >10 000 ha (Fig. 3), sub-catchment size and total AoI per sub-catchment were independent variables indicating that the selection of AoI was based on criteria of habitat quality rather than land quantity. Figure 4 shows the lack of correlation between sub-catchment size and AoI per sub-catchment in the Woodlands region.

Discussion and Conclusions
Application of the BioPrEP framework will mean that investment decisions are informed by an explicit and systematic set of ecological considerations. Bush Heritage can use this framework as a risk

Figure 2. Location of the top 10 sub-catchments that possess the highest areas of interest (AoI) ranking stratified by IBRA Bioregion in the Woodlands region. Note each colour represents a different IBRA Bioregion with the darker shade indicating higher ranking.

Table 5. Summary of results of AoI analysis for the Woodlands region by IBRA bioregions and sub-bioregions

<table>
<thead>
<tr>
<th>IBRA bioregion</th>
<th>‘Areas of Interest’ (ha)</th>
<th>% Total AoI</th>
<th>Total bioregion area (ha)</th>
<th>% AoI/ bioregion</th>
<th>Sub-bioregions with AoI majority</th>
<th>% AoI in top sub-bioregions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigalow Belt South</td>
<td>374 598</td>
<td>57.1</td>
<td>5 264 581</td>
<td>7.1</td>
<td>Pilliga Outwash; Pilliga</td>
<td>87.1</td>
</tr>
<tr>
<td>Riverina (southern half)</td>
<td>159 977</td>
<td>24.4</td>
<td>3 824 136</td>
<td>4.2</td>
<td>Murray Sands; Victorian Riverina</td>
<td>100.0</td>
</tr>
<tr>
<td>NSW South Western Slopes</td>
<td>24 764</td>
<td>3.8</td>
<td>8 757 351</td>
<td>0.3</td>
<td>Lower Slopes; Upper Slopes</td>
<td>100.0</td>
</tr>
<tr>
<td>Nandewar</td>
<td>21 240</td>
<td>3.2</td>
<td>2 703 362</td>
<td>0.8</td>
<td>Peel, Nandewar</td>
<td>98.2</td>
</tr>
<tr>
<td>Murray Darling Depression</td>
<td>20 505</td>
<td>3.1</td>
<td>2 282 494</td>
<td>0.9</td>
<td>Wimmera</td>
<td>99.7</td>
</tr>
<tr>
<td>New England Tablelands</td>
<td>18 241</td>
<td>2.8</td>
<td>3 001 065</td>
<td>0.6</td>
<td>Eastern Nandewars;</td>
<td>36.1</td>
</tr>
<tr>
<td>Victorian Midlands</td>
<td>16 772</td>
<td>2.6</td>
<td>3 478 745</td>
<td>0.5</td>
<td>Dundas Tablelands; Goldfields</td>
<td>78.5</td>
</tr>
<tr>
<td>South-eastern Highlands</td>
<td>15 806</td>
<td>2.4</td>
<td>4 572 614</td>
<td>0.3</td>
<td>Crookwell; Monaro</td>
<td>43.4</td>
</tr>
<tr>
<td>Victorian Volcanic Plain</td>
<td>3896</td>
<td>0.6</td>
<td>2 351 711</td>
<td>0.2</td>
<td>Victorian Volcanic Plain</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>655 799</td>
<td>100.0</td>
<td>36 236 059</td>
<td>1.8</td>
<td></td>
<td>88.9</td>
</tr>
</tbody>
</table>

AoI, area of interest; IBRA, Interim Biogeographic Regionalisation of Australia.
management tool to maximise the chance that investments proposals are likely to contribute to its mission before significant investment is made. The framework creates a context within which to demonstrate rigour and transparency around the property selection process and helps contribute to the scientific basis of Bush Heritage’s operations. Application of the BioPrEP framework should also give Bush Heritage supporters and investors more confidence in what has been achieved to date in the absence of such a tool and what is aimed for in the future.

Because sub-catchments were the SUoA, and the properties here are orders of magnitude smaller and largely freehold, it is possible only to identify which sub-catchments are likely to support larger properties with more AoI. Whilst these rankings help contextualise individual leases and sub-catchments in terms of priority for conservation investment, they cannot and should not dictate the final decision. Ultimately, information to inform a particular land acquisition must be based on consideration of other factors and information including: (i) property availability; (ii) price and (iii) variables that affect long-term management costs such as physical infrastructure, isolation and degree of degradation. Implementation of the BioPrEP framework will therefore include a field component that complements and validates the computer-based assessments (e.g. Purdie et al. 1986). Also, there may never be spatially distributed source data available to apply particular indicators on a landscape-wide basis. However, if considered of sufficient importance, it may be possible to assess them at a property-level through site visits and focused surveys. Regarding further development of goal 5 (Mitigate threats), the work by Pressey et al. (2000) in NSW, that identified agricultural land suitability as a surrogate for threat of disruption, warrants further consideration as an indicator.

Practically, final decisions about conservation investments reflect time-dependent social and economic considerations as much as biophysical factors. Alternative scenarios need to be considered, where social and economic criteria are explicitly traded off with the conservation goals in each particular instance, to identify efficient and effective outcomes for a particular financial investment. However, before sophisticated, optimisation-based planning approaches are pursued, more research and development is needed into both: (i) the selection, application and interpretation of ecologically appropriate and parsimonious sets of criteria and indicators and (ii) how these can be integrated into a more comprehensive decision-support framework. A range of computer-based decision-support tools are now available to assist decision makers in systematic conservation planning, for example, the Marxan family of software (Possingham et al. 2000). It is recommended that organisations such as Bush Heritage work towards utilising such planning tools. However, this will require, amongst other things, the development of targets for the criteria presented here (Table 2), and we recommend that organisations first gain experience in integrating the BioPrEP framework into their current decision-making processes.

The BioPrEP framework is designed to be flexible so that it can accommodate Australia’s landscape diversity and varying regional characteristics, the availability of new information, and changing land use and environmental conditions, including climate change impacts. And while the seven goals remain constant, there are choices to be made in terms of the most appropriate set of criteria and indicators. These choices require informed judgment that are best made for each region by...
panels of experts with knowledge of local ecological characteristics and land use conditions. Once parameterised, MCAS-S has proven to be a useful and appropriate decision-support tool for Bush Heritage in arriving at conservation investment decisions. While the framework and case study results are indicative, and further analyses are required before they can be considered operational, the approach has potential application to other organisations in the private conservation sector.

Acknowledgements

The remotely sensed data used for the GPP-based indicators were produced from research funded by ARC Linkage grant LP0455163. We are grateful to the following individuals and organisations for their generous assistance with this project: Dr Rob Lesslie for facilitating access to MCAS-S and for assisting in the fine tuning of MCAS-S functions to the needs of our project; Dr Janet Stein and Prof. Michael Hutchinson for providing access to the water sub-catchment boundaries and the digital elevation model; Gregory Summerell from NSW Department of Primary Industry for providing access to the digital elevation model; Gregory Summerell (2004) Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes. Ecology 17, 26–28. Mackey B., van Bommel L., Gilmore S., Foreman P. and Berry S. (2008c) BioPreP – an Approach to Conservation Land Assessment for Bush Heritage Australia, Part II. Case Study Results. Unpublished Report, Bush Heritage Australia, Melbourne.

References

Nix H. A. (1976) Environmental Control of Breeding, Post-Breeding Dispersal and Migration of Birds in the Australian Region. 16th International Ornithological Congress, Australian Academy of Science, Melbourne.

Document Transformation Technologies, Durban, South Africa.