ECOLOGY OF NATIVE

GRASSLANDS ON VICTORIA’S

NORTHERN RIVERINE PLAIN
ECOLOGY OF NATIVE GRASSLANDS ON VICTORIA'S NORTHERN RIVERINE PLAIN

Submitted by
Paul Warrick Foreman, B. Sci. (For.)

A thesis submitted in total fulfilment
of the requirements for the degree of
Master of Science

School of Botany
Faculty of Science and Technology

La Trobe University
Bundoora, Victoria 3083
Australia

December 1996
CONTENTS

Chapter 1 Introduction 1.1
South-eastern Lowland Native Grasslands are Australia's Most 1.1
Threatened Ecosystems
Poor Knowledge Base of Ecology of Grassy Ecosystems and 1.2
Victoria's Northern Riverine Plain
Thesis Overview 1.3
Thesis Style 1.4
References 1.4

Chapter 2 Composition, structure and distribution of native grassland and 2.1
grassy woodland remnants on Victoria's Northern Riverine Plain
Abstract 2.1
Introduction 2.2
Materials and Methods 2.6
Study Area Location 2.6
Study Area Climate and Land Use 2.7
Data Collection and Analysis 2.7
Field Survey 2.7
Selection of Quadrat Data for 2.9
TWINSPLAN Analysis
Environmental, Climatic and 2.9
Statistical Analyses
Results 2.10
Preliminary Classification of Broad Vegetation 2.10
Types on the Northern Plain
Detailed Classification of Grassy Vegetation on 2.14
High Level Riverine Plain and Surrounding Slopes
Geographic Distribution of Grassland and Grassy 2.14
Woodland Vegetation Groups
Structure and Dominant Species Composition 2.16
Floristics: Richness and Conservation Status 2.18
Relationship to Grazing Pressure 2.19
Environmental Relationships of Grassland and 2.20
Grassy Vegetation Groups
Geology and Geomorphology 2.20
Land Tenure and Management
Regime (Stock Grazing) 2.21
Soil Types and Drainage 2.23
Chapter 3
Composition, structure and distribution of treeless vegetation on Victoria's Northern Riverine Plain at the time of European settlement.
Abstract
Introduction
Methods
Historical Information Sources
Map Analyses, Grassland-Environment Relationships and Regional Distribution Mapping
Remnant Vegetation
Results
Literature Records
Variegated Landscape of Treeless Plains and other Vegetation Types
Widespread Presence of Shrubs across the Open Plain Country
Nature of the Ground Layer over the Treeless Plains
Disturbance, Aboriginal Management and Ecological Dynamics
Contrasting Descriptions of the Same Landscape
Illustrations
Historical Maps
Grassland-Environment Relations; Soil Maps
Treeless Plain Distribution at the Time of European Settlement
Remnant Vegetation and Post-Settlement Change
Discussion
Chapter 4
Effect of Exclosure, burning and cultivation on a long-grazed species-rich remnant grassland on Victoria’s Northern Riverine Plain
Abstract
Introduction
Methods
Site Description
Experimental Design
Variable Sampling and Data Collection
Data Analysis
Vegetation Composition
Results
Rainfall
Effect of Exclosure
Effect of Cultivation
Effect of Burning
Species Level - % OC, Density and Frequency 4.26
Burning/Grazing Interactions 4.27
Discussion 4.28
Grazing Trends 4.28
Effects of Cultivation 4.32
Effects of Burning 4.33
Effects of Climate 4.35
Reproductive Biology of Perennial Native Forbs 4.36
Conservation Management 4.37
Conclusion 4.38
Acknowledgments 4.39
References 4.39

Chapter 5 Thesis overview and conclusions 5.1
Introduction 5.1
Phase 1: Ecology of Existing Remnant Grassy Vegetation 5.1
Phase 2: Nature of Treeless Plain Vegetation at the Time of European Settlement 5.3
Phase 3: Disturbance Ecology of a Long-grazed Species-rich Grassland 5.5
Future Research 5.7

List of Tables
Chapter 2
2.1 Summary of the vascular flora of grassland and grassy quadrats in group J (Fig. 2.2). 2.12
2.2 Relationship between the 14 grassland and grassy woodland groups and vegetation structure and dominant species composition. 2.17
2.3 Summary of the vascular flora within each of the 14 groups by selected life-form groups (habit and life history). 2.19
2.4 Number of quadrats occurring in each of 14 grassland and grassy woodland groups by geology and geomorphology. 2.21
2.5 Relationship between land tenure and stock grazing frequency within each of the 14 grassland and grassy woodland groups. 2.22
2.6 Comparison of the floristics and structure of grassland and grassy woodland remnants across tenure categories. 2.23
2.7 Summary of soil types within each of the 14 grassland and grassy woodland groups. 2.24
Chapter 3

3.1 Proportion of soil types in part of the Fernihurst district which were mapped as "box forest" or "open plains" in 1859. 3.22

3.2 Relationship between soils and vegetation in the Mid-Loddon district. 3.24

3.3 List of shrubs observed in remnant grassland vegetation throughout the Northern Plain. 3.28

Chapter 4

4.1 Example of REML analyses utilised: Maireana excavata density in 1995. 4.8

4.2 Description of common species in each of the six life-form groups present. 4.9

4.3 Estimated species richness per plot of grassland vegetation, with (G) and without (U) domestic stock grazing, over three years from 1993 to 1995 based on density techniques. 4.11

4.4 Relationship between physical size and habit of native annual forbs and their respective behaviour under grazing (G) and exclosure (U) as measured by % OC and density in 1995. 4.15

4.5 Estimated species richness per plot of grassland vegetation, cultivated in the first year of experiment (C1) and annually (CC) [with and without domestic stock grazing], over three years from 1993 to 1995 based on density techniques. 4.18

4.6 Grazing/cultivation and grazing/burning interactions in 1995: (a) %O.C. of life-form groups, (b) % OC of six major native annual forbs and (c) density of six major native annual forbs. 4.23

4.7 Estimated species richness per plot of grassland vegetation, burnt in the first year of experiment (B1) and annually (BC) [with and without domestic stock grazing], over three years from 1993 to 1995 based on density techniques. 4.24

List of Figures

Chapter 2

2.1 (a) Map of Victoria depicting the extent of the Northern Plain (Riverina) and immediately adjacent biogeographic regions. 2.5

(b) Map of the Northern Plain highlighting key towns, rivers and other relevant features. 2.5

2.2 Preliminary TWINSPAN classification of 462 quadrats from throughout the Northern Plain. 2.11

2.3 Distribution of 196 grassland and grassy woodland quadrats in group J (Fig. 2.2). 2.12
2.4 TWINSPAN classification [in two parts, (a) and (b)] of grassland and grassy woodland quadrats in group J (Fig. 2.2) from throughout the Northern Plain.

2.5 Geographic distribution maps of quadrats in 10 of the 14 groups identified by the second TWINSPAN analysis. (a) group 2, (b) group 3, (c) group 4, (d) group 5, (e) group 6, (f) group 7, (g) group 9, (h) group 11, (l) group 12 and (j) group 13.

2.6 Comparison of the floristic and structural features of grasslands with grassy woodlands throughout the Northern Plain.

2.7 Relationship between stock grazing and floristics/structure of grassland and grassy woodland throughout the Northern Plain.

2.8 Proportion of grassland and grassy woodland remnants in four soil type classes graded by surface soil texture.

2.9 (a) BIOCLIM predicted mean annual precipitation (mm) within 10 of the 14 vegetation groups.

(b) Inverse square-root transformation to stabilise variances and enable LSD comparison (P<0.001).

2.10 Generalised model of community divergence in Northern Victorian grassland vegetation.

Chapter 3

(b) View of treeless plains south of Mitiamo showing ground vegetation detail and open woodland copses in background by Ludwig Becker, entitled “Crossing the Terrick Terrick Plains.” 29 August 1860.

(c) View of treeless plains south of Mitiamo with the Terrick Terrick Range in the distance, entitled “Terrick Terrick Hills, bearing N. 6. W. Dist: 13 miles. Mount Hope far above horizon by the effect of Mirage, is 25 miles Dist. Trees and other objects near the horizon effected by the Fata morgana.” 30 August 1860.

3.2 Selected vegetation annotations recorded on historical survey maps in the western half of the Northern Plain.

3.3 (a) Plan of Ferneyhurst run (Loddon River) in 1859 depicting major water courses, lease boundaries, thoroughfares, dwellings and vegetation boundaries (grassland area shaded).

(b) Map of identical area depicting grassland distribution (shaded) derived from soils and API information.
3.4 Aerial photographic interpretation of tree cover derived from a 1:25,000 photograph taken near Raywood; Mitiamo 1:100,000 map sheet run no. 14, photo no. 77 on 21 December 1990.

3.5 Victoria's forest cover in 1869; derived from early survey maps - showing the western portion of the Northern Plain.

3.6 A generalised distribution map of the presumed extent of treeless plains vegetation at the time of European settlement.

3.7 Generalised vegetation profiles of
(a) an existing lightly grazed species-rich grassland
(b) an existing ungrazed species-rich grassland
(c) the hypothetical treeless plain vegetation present around Mount Hope in the 1840's.

Chapter 4

4.1 (a) Stocking rates and levels
(b) Grazing calendar between 1989 and 1996 in the experimental paddock.

4.2 Rainfall at Pyramid Hill - 1993 to 1995 versus long term average:
(a) annual and (b) seasonal.

4.3 Effect of Exclosure exclosure on grassland vegetation between 1993 and 1995 as measured by the mean % OC of (a) bare ground, (b) total exotic species, (c) total native species, (d) exotic annual grasses, (e) exotic perennial forbs, (f) exotic annual forbs, (g) native perennial grasses, (h) native perennial forbs, and (l) native annual forbs.

4.4 Response of two native annual forbs, Goodenia pusilliflora (a) % OC, (b) density and (c) frequency, and Leptorrhynchos scabrus (d) % OC, (e) density and (f) frequency, to grazing and exclosure between 1993 and 1995.

4.5 Relationship between (a) winter rainfall and the abundance of native species, and (b) annual rainfall and the abundance of exotic species under control conditions.

4.6 Relationship between amount of available interstitial space (gaps) and the abundance of native annual forbs under control conditions.

4.7 Response of the native perennial forb, Leptorrhynchos squamatus (a) % OC, (b) density and (c) frequency, to grazing and exclosure between 1993 and 1995.

4.8 Effect of cultivation on grassland vegetation between 1993 and 1995, with and without grazing.
4.9 Response of two native annual forbs, *Goodenia pusilliflora* (a) % OC, (b) density and (c) frequency, and *Leptorhynchos scabrus* (d) % OC, (e) density and (f) frequency to cultivation between 1993 and 1995. 4.22

4.10 The interaction between grazing and cultivation for (a) *Goodenia pusilliflora* density, (b) native annual forb % OC and (c) native perennial forb % OC 4.23

4.11 Effect of burning on grassland vegetation between 1993 and 1995, with and without grazing. 4.25

4.12 The interaction between burning and cultivation for (a) *Leptorhynchos scabrus* density, (b) native annual forb % OC and (c) native perennial forb % OC. 4.28

List of Appendices

Chapter 2

2.1 Species frequencies derived from second TWINSPLAN classification of selected grassland and grassy woodland quadrats. 2.52

2.2 Key environmental and floristic features of each grassland and grassy woodland group, except groups 1, 8, and 10. 2.54

Chapter 3

3.1 Probable identity of common plant names mentioned in map annotations and in historical literature. 4.47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The effects of grazing.</td>
<td>4.44</td>
</tr>
<tr>
<td>4.2</td>
<td>The effects of cultivation.</td>
<td>4.45</td>
</tr>
<tr>
<td>4.3</td>
<td>The effects of burning.</td>
<td>4.47</td>
</tr>
</tbody>
</table>
Summary

This thesis involved (a) an ecological study of the nature of existing grassland and grassy woodland remnants on the Northern Plain, (b) an historical study of the nature and distribution of treeless plain vegetation at the time of European settlement, and (c) an ecological study of the effects of disturbance on a long-grazed species-rich grassland remnant.

Community classification was undertaken using data collected from 196 least modified sites located on private property, roadsides, rail reserves, and other forms of public land. Grasslands were found to be floristically distinct from grassy woodlands and their ecology linked to environmental (soils, rainfall and geology) and anthropogenic (post-settlement land management) factors.

The former distribution, nature and function of the original treeless plain vegetation were reconstructed from interpretation of historical records and analysis of remnant vegetation. Last century treeless plains occupied about 4000 km2 mainly in the western half of the region, but today less than 2.5% remains (mainly on private property) as a consequence of cereal cropping, over-grazing and irrigation. The historical accounts indicate that treeless plain vegetation no longer exists in its original form as it has been transformed by the exclusion of fire, loss of native fauna and the introduction of exotic flora and fauna.

Native species richness was maintained under a conservative grazing regime by maintaining an open sward which provided for the persistence of annuals. The smaller annuals were favoured under these conditions because grazing pressure was proportional to plant size. Burning had a similar impact on structure to that of grazing, but reduced the abundance of annuals and may prove to have application as a conservation management tool. Soil disturbance reduced the abundance of all indigenous species and increased that of particular exotic grasses. Recovery from it was slow. Cultivation is regarded as the most significant threat to grassland remnants.
Statement of Authorship

Except where reference is made in the text, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis by which I have qualified for or been awarded another degree or diploma.

No other person’s work has been used without due acknowledgment in the main text of the thesis.

This thesis has not been submitted for the award of degree or diploma in any other tertiary institution.

Paul Warrick Foreman
6th December, 1996.
Acknowledgments

I wish to thank the following people for their generous assistance over the duration of this thesis:

Bob Parsons for project supervision and administration.

Ian Lunt and John Morgan for encouragement and constructive comments throughout.

My father, Barrie Foreman for assistance with the management of the Mitiamo disturbance experiment (Chapter 4).

Dorothy Davies for use of her amazing grassland remnant to establish the disturbance experiment.

Sue Hadden for her generous encouragement and support over the last two years.

Leigh Callinan for his generous support and assistance with experimental design and data analysis.

Staff of the Department of Natural Resources and Environment, especially Rob Price, Rob Jolly, Shirley Diez, Peter Milne and Ian Mansergh.

Staff of the School of Botany at La Trobe University, for general assistance and support, especially Max Bartley and Doug Oakley. Also Neville Scarlett and Dave Ashton for stimulating discussions.